Real algebras with a Hilbert space structure

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries of Hilbert space effect algebras

Let H be a Hilbert space and E(H) the effect algebra on H, that is, E(H) is the set of all self-adjoint operators A : H → H satisfying 0 ≤ A ≤ I. The effect algebra can be equipped with serveral operations and relations that are important in mathematical foundations of quantum mechanics. Automorphisms with respect to these operations or relations are called symmetries. We present a new method t...

متن کامل

Hilbert Space of Real Sequences

One can prove the following two propositions: (1) The carrier of l2-Space = the set of l2-real sequences and for every set x holds x is an element of the carrier of l2-Space iff x is a sequence of real numbers and idseq(x) idseq(x) is summable and for every set x holds x is a vector of l2-Space iff x is a sequence of real numbers and idseq(x) idseq(x) is summable and 0l2-Space = Zeroseq and for...

متن کامل

A Morita Theorem for Algebras of Operators on Hilbert Space

We show that two operator algebras are strongly Morita equivalent (in the sense of Blecher, Muhly and Paulsen) if and only if their categories of operator modules are equivalent via completely contractive functors. Moreover, any such functor is completely isometrically isomorphic to the Haagerup tensor product (= interior tensor product) with a strong Morita equivalence bimodule. Date: Septembe...

متن کامل

Se p 20 03 The Hilbert - Space Structure of Non - Hermitian Theories with Real Spectra ‡

We investigate the quantum-mechanical interpretation of models with non-Hermitian Hamiltonians and real spectra. After describing a general framework to reformulate such models in terms of Hermitian Hamiltonians defined on the Hilbert space L2(−∞,∞), we discuss the significance of the algebra of physical observables. PACS numbers: 03.65.-w, 03.65.Ca

متن کامل

Real-linear Operators on Quaternionic Hilbert Space

The main result is that any continuous real-linear operator A on a quaternionic Hubert space has a unique decomposition A=A0+iiAl + izAi+iiA3, where the A„ are continuous linear operators and (fi,f2,'3) is any right-handed orthonormal triad of vector quaternions. Other results concern the place of the colinear and complex-linear operators in this characterisation and the effect on the Av of a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 1966

ISSN: 0004-2080

DOI: 10.1007/bf02590966